TensorflowでMNIST(4)

前回までで、MNISTをDeeplearningするにあたって、回帰分析、多層パーセプトロン、畳み込みニューラルネットワークとTensorflowで実装してみました。

入力データに関しての補足です

入力用のデータはMNISTのデータを使っているのですが、28×28のビットマップデータを0-254までの数値(白黒)で表したデータを入力とします。

これを用いてTensorflowの入力データ用に1次元配列に変換します。その際、ビットマップデータを左上から順に1次元の配列に格納しているので、結局784要素の配列となります。これを、ビットマップデータ数分用意(60000)するので結局、784×60000という巨大な行列が入力となります。

実際の入力利用したデータは、その列の先頭に正解を付与しているので、785×60000でできたファイルとなります

入力ファイル

これが1つのデータです。先頭の5が正解データ、それ以降0から続くデータがビットマップの数値表現です

train.txt

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 18 18 18 126
136 175 26 166 255 247 127 0 0 0 0 0 0 0 0 0 0 0 0 30 36 94 154 170 253 253 253
253 253 225 172 253 242 195 64 0 0 0 0 0 0 0 0 0 0 0 49 238 253 253 253 253 253
253 253 253 251 93 82 82 56 39 0 0 0 0 0 0 0 0 0 0 0 0 18 219 253 253 253 253 2
53 198 182 247 241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 156 107 253 253 205 11
0 43 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 1 154 253 90 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 139 253 190 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 11 190 253 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 241 225 160 108 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 81 240 253 25
3 119 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 186 253 253 150 27 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 93 252 253 187 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 249 253 249 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 46 130 183 253 253 207 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 148 22
9 253 253 253 250 182 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 114 221 253 253 253
253 201 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 66 213 253 253 253 253 198 81 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 171 219 253 253 253 253 195 80 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 55 172 226 253 253 253 253 244 133 11 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 136 253 253 253 212 135 132 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

Tensorflow入力

実際にTensorflowに計算させる際には0-254のビットマップデータを0-1の表現に変更します

[ 0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.
0.32941176	0.7254902	 0.62352941	0.59215686	0.23529412	0.14117647
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.87058824	0.99607843	0.99607843	0.99607843	0.99607843
0.94509804	0.77647059	0.77647059	0.77647059	0.77647059	0.77647059
0.77647059	0.77647059	0.77647059	0.66666667	0.20392157	0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.2627451	 0.44705882	0.28235294
0.44705882	0.63921569	0.89019608	0.99607843	0.88235294	0.99607843 
...
0.4745098	 0.99607843	0.81176471	0.07058824	0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.					0.					0.					0.
0.					0.					0.					0.				]

教師データ

正解データは1-of-k方式のデータに直します。下記ですと7になります

[ 0.	0.	0.	0.	0.	0.	0.	1.	0.	0.]

回帰分析のダミー変数みたいな感じだと思えばいいかと思います