EMRでSparkSQLサンプル

SparkからHiveが使いづらいというか使えない?のでSparkSQLを使ってみました。

そこそこ試行錯誤する必要があったのでメモです。

データファイル

銘柄コード,日付,始値,高値,安値,終値,出来高

のフォーマットのファイルを用意しておきます。こんな感じ。

1301,2004-04-01,198,198,195,196,651000
1301,2004-04-02,194,196,194,196,490000
1301,2004-04-05,196,200,195,197,1478000
1301,2004-04-06,202,208,200,207,4324000

これをS3へアップしておきます

build.sbt

こんな感じで記述します。build assemblyでエラーが出るのでこんな記述にしています。

name := "spark_sample"

version := "1.0-SNAPSHOT"

scalaVersion := "2.11.7"

// additional libraries
libraryDependencies ++= Seq(
	"org.apache.spark" %% "spark-core" % "1.5.2" % "provided",
	"org.apache.spark" %% "spark-sql" % "1.5.2",
	"org.apache.spark" %% "spark-hive" % "1.5.2",
	"org.apache.spark" %% "spark-streaming" % "1.5.2",
	"org.apache.spark" %% "spark-streaming-kafka" % "1.5.2",
	"org.apache.spark" %% "spark-streaming-flume" % "1.5.2",
	"org.apache.spark" %% "spark-mllib" % "1.5.2",
	"org.apache.commons" % "commons-lang3" % "3.0",
	"org.eclipse.jetty"	% "jetty-client" % "8.1.14.v20131031",
	"com.typesafe.play" %% "play-json" % "2.3.10",
	"com.fasterxml.jackson.core" % "jackson-databind" % "2.6.4",
	"com.fasterxml.jackson.module" %% "jackson-module-scala" % "2.6.3",
	"org.elasticsearch" % "elasticsearch-hadoop-mr" % "2.0.0.RC1",
	"net.sf.opencsv" % "opencsv" % "2.0",
	"com.twitter.elephantbird" % "elephant-bird" % "4.5",
	"com.twitter.elephantbird" % "elephant-bird-core" % "4.5",
	"com.hadoop.gplcompression" % "hadoop-lzo" % "0.4.17",
	"mysql" % "mysql-connector-java" % "5.1.31",
	"com.datastax.spark" %% "spark-cassandra-connector" % "1.5.0-M3",
	"com.datastax.spark" %% "spark-cassandra-connector-java" % "1.5.0-M3",
	"com.github.scopt" %% "scopt" % "3.2.0",
	"org.scalatest" %% "scalatest" % "2.2.1" % "test",
	"com.holdenkarau" %% "spark-testing-base" %	"1.5.1_0.2.1",
	"org.apache.hive" % "hive-jdbc" % "1.2.1"
)

resolvers ++= Seq(
	"JBoss Repository" at "http://repository.jboss.org/nexus/content/repositories/releases/",
	"Spray Repository" at "http://repo.spray.cc/",
	"Cloudera Repository" at "https://repository.cloudera.com/artifactory/cloudera-repos/",
	"Akka Repository" at "http://repo.akka.io/releases/",
	"Twitter4J Repository" at "http://twitter4j.org/maven2/",
	"Apache HBase" at "https://repository.apache.org/content/repositories/releases",
	"Twitter Maven Repo" at "http://maven.twttr.com/",
	"scala-tools" at "https://oss.sonatype.org/content/groups/scala-tools",
	"Typesafe repository" at "http://repo.typesafe.com/typesafe/releases/",
	"Second Typesafe repo" at "http://repo.typesafe.com/typesafe/maven-releases/",
	"Mesosphere Public Repository" at "http://downloads.mesosphere.io/maven",
	Resolver.sonatypeRepo("public")
)

mergeStrategy in assembly <<= (mergeStrategy in assembly) { (old) =>
	{
		case m if m.toLowerCase.endsWith("manifest.mf") => MergeStrategy.discard
		case m if m.startsWith("META-INF") => MergeStrategy.discard
		case PathList("javax", "servlet", xs @ _*) => MergeStrategy.first
		case PathList("org", "apache", xs @ _*) => MergeStrategy.first
		case PathList("org", "jboss", xs @ _*) => MergeStrategy.first
		case "about.html"	=> MergeStrategy.rename
		case "reference.conf" => MergeStrategy.concat
		case _ => MergeStrategy.first
	}
}

ちなみにproject/assembly.sbtはこれ

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.14.1")

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "4.0.0")

SqlSample.scala

http://spark.apache.org/docs/latest/sql-programming-guide.html#upgrading-from-spark-sql-15-to-16

この辺りを参考に

package sample
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark._
import org.apache.spark.api.java._
import org.apache.spark.sql._
import org.apache.spark.sql.types._

object SqlSample {
	def main(args: Array[String]) {
		val conf = new SparkConf().setAppName("SparkSQL").setMaster("yarn-cluster")
		val sc = new SparkContext(conf)	

		val sqlContext = new org.apache.spark.sql.SQLContext(sc)
		// Import Row.
		import org.apache.spark.sql.Row;

		// Import Spark SQL data types
		import org.apache.spark.sql.types.{StructType,StructField,StringType};

		val histRDD = sc.textFile(args(0)).map(_.split(",")).
			map(p => Row(p(0), p(1),p(2),p(3),p(4),p(5),p(6)))
		val schemaString = "code date open high low close volume"
		val schema =
				StructType(
				schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))	
				
		// Apply the schema to the RDD.
		val histDataFrame = sqlContext.createDataFrame(histRDD, schema)
		// Register the DataFrames as a table.
		histDataFrame.registerTempTable("priceHist")
		
		// SQL statements can be run by using the sql methods provided by sqlContext.
		val results = sqlContext.sql("SELECT code,date,open FROM priceHist where code='6758'")

		val ary=results.map(_.getValuesMap[Any](List("code", "date","open"))).collect()

		val outputLocation = args(1) // s3n://bucket/
		val data=sc.makeRDD(ary)
		data.saveAsTextFile(outputLocation)

		sc.stop()
	}
}

build

$ sbt package

これで作成したJarを同じくS3へアップします

EMR

今までと同様にEMRを作成し、AddStepでSparkApplicationを追加します。Jarは先ほどアップしたものを指定します

Spark-submit options
--class sample.SqlSample
Arguments
s3n://bucket/output

ここには出力ファイルが入ります

じっこすればOutputにMapで表現されたデータが保存されます